
1

Software Architecture for Humanoid Control:

Review & Guide

Terrestrial Robotics Engineering & Controls Lab
Mechanical Engineering Department

Virginia Tech
Blacksburg, VA 24061

Ava Lakmazaheri
Undergraduate Research Assistant

ava@students.olin.edu

Summer 2018

Table of Contents:

Preface 1

Overview 1

Control Architecture 2

Software Review 2

XBotCore 3
Overview 3
Installation 4
Running XBotCore 6
Understanding Plugins 7
Creating a Plugin 8
Introduction to ROS 10
Creating a Controllable Robot in ROS 11
Higher-Level Control: IK Engine 17
Projects Using XBotCore 18

IHMC Open Robotics Software 20
Overview 20
Quick Start Demonstration 20
How it Works 21

PART 1: The Basics 21
PART 2: The Control 21
PART 3: The Demonstration 24

User Commands 25
High-Level: Behaviors 28
Low-Level: Using the Controller Core 33
Accessing the ORS 35
Valkyrie to THOR 36
Projects Using IHMC 37

Conclusions 40

References 41

Preface

The purpose of this document is to serve as a guide for implementing software control for a humanoid
robot. We will begin by grounding this investigation in its real-world implications. A majority of the report
will focus on what have been identified as two primary solutions to our control problem. To augment
poor documentation in this area, we will discuss both solutions on a conceptual level and provide
step-by-step instructions to begin implementing and adapting them. This is not a standalone document,
so we will refer to published resources when available. We will end by formulating conclusions on the
viability of each software and describe steps to take moving forward.

Overview

In the broad mission to improve quality of life, humanoid robots have a unique niche. Their capability for
dexterity and intelligence enables them to perform life-critical tasks such as disaster search-and-rescue
and assisting people with severe motor impairment.

The DARPA Robotics Challenge (DRC) sought to promote innovation in this area by inviting teams to
develop a humanoid robot that can perform disaster-response operations (drive a utility vehicle, traverse
rubble, enter a building, close a valve to a leaking pipe, etc.) semi-autonomously and in real-time.

In this work, we aim to identify and adapt a software architecture that supports such advanced
locomotion and manipulation tasks for the TREC Lab’s own humanoid robot.

Given that this robot is still in development, and to make the future process robust to design change, we
are interested in a universal system that decouples high-level logic from low-level hardware control. We
believe that focusing on such cross-robot frameworks will broadly enable investigators to bypass
infrastructure-level programming and invest more in research-level efforts.

1

Control Architecture

Our first goal was to conceptualize a robust operating logic for a generic humanoid robot. After studying
various strategies from the DRC, we synthesized the following system flow that maps abstract tasks to
low-level control.

Software Review

In order to realize our software architecture, we began by evaluating existing open-source control
applications for functionality, modularity, and simplicity. We heeded special attention to systems with an
abstracted hardware layer for easy adaptation to the TREC Lab’s robots. We also made sure to prioritize
real-time operation.

Our primary findings were: 1) XBotCore: a software platform that supports real-time humanoid control
and 2) IHMC Open Robotics Software: a set of libraries for out-of-the-box planning and robot operation.
Both allow modelling abstract behaviors using finite state machines, multi-tasking via a whole-body
inverse kinematics engine, and simplifying complex structures into a universal robot description format.

2

XBotCore

Overview
XBotCore is a software platform. It does not contain the control algorithms necessary to operate a
humanoid, but enables communication between user-developed modules, third-party software, and
robot hardware by extending the Robot Operating System (ROS) middleware.

A primary feature of this software is its real-time control capabilities. XBotCore’s plugin architecture was
designed to ensure a 1 kHz control loop communicating to the robot even with intensive background
computations. To learn more about the platform, read: On the Design and Evaluation of XBotCore [4].

Given its high transmission rate, XBotCore was originally designed for EtherCAT based robots. However,
later versions of the software support any device driver via a hardware abstraction layer . 1

The development of XBotCore stemmed from the Italian Institute of Technology’s DARPA Robotics
Challenge entry. To read about this entry at length, including their software architecture and the
XBotCore control loop process, see: WALK‐MAN: A High‐Performance Humanoid Platform for Realistic
Environments [7].

We installed XBotCore and created non-real time communication plugins to test the software. These
modules enable robot control via either direct joint trajectories or an inverse kinematics solver. A ROS
node then visualizes whole-body robot behavior in the third-party simulator Gazebo.

1 Though this is not our focus, we note the following resource to guide further reading: Towards a Robot
Hardware Abstraction Layer (R-Hal) Leveraging the XBot Software Framework [6].

3

https://www.researchgate.net/publication/322752203_On_the_Design_and_Evaluation_of_XBotCore_a_Cross-Robot_Real-Time_Software_Framework
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21702
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21702
https://www.researchgate.net/publication/323061155_Towards_a_Robot_Hardware_Abstraction_Layer_R-Hal_Leveraging_the_XBot_Software_Framework
https://www.researchgate.net/publication/323061155_Towards_a_Robot_Hardware_Abstraction_Layer_R-Hal_Leveraging_the_XBot_Software_Framework

Installation
The source code for XBotCore is available at https://github.com/ADVRHumanoids. In order to install this
software, it is not sufficient to clone the XBotCore repository. The ADVR Humanoid group has created a
superbuild process that installs XBotCore and all of its dependencies needed to run.

Successfully installing and running XBotCore requires a Linux 16.04 OS. A clean OS is preferable, since
you do will not face issues with broken packages. To check that the XBotCore build process is working
on a clean OS, use Travis CI: a continuous integration tool for building and testing Github software
projects: https://travis-ci.org/ADVRHumanoids/advr-superbuild.

To install XBotCore from terminal:

Create an advr-superbuild folder in the home directory.
0. $ cd ~

1. $ git clone --depth=50 --branch=master

https://github.com/ADVRHumanoids/advr-superbuild.git

Fix C++ compilation.
2. $ export CXX=g++

3. $ export CC=gcc

Install necessary packages.
4. $ sudo apt-get update

5. $ sudo apt-get install g++

6. $ sudo apt-get install libboost-all-dev

7. $ sudo python -m pip install pip==9.0.1

8. $ sudo apt-get install cmake

Configure git account.
9. $ git config --global user.name "your github name"

10. $ git config --global user.email "your github email"

Download ROS and other large packages via basic setup.
11. $ cd ~/advr-superbuild
12. $./scripts/basic_setup.sh

Source robotology setup file. This will allow you to run XBotCore executables later.
13. $ chmod 777 ./robotology-setup.bash

14. $ source ./robotology-setup.bash

15. $ echo “source ./robotology-setup.bash” >> ~/.bashrc

Check ROS distribution. In this example, we have used ROS Kinetic.
16. $ cd /opt/ros/

17. $ ls

Source ROS setup.
18. $ source /opt/ros/kinetic/setup.bash

Install a few more packages.
19. $ pip install catkin_pkg

20. $ pip install empy

4

https://github.com/ADVRHumanoids
https://travis-ci.org/ADVRHumanoids/advr-superbuild

Create directory for build files.
21. $ cd ~/advr-superbuild

22. $ mkdir -p build

23. $ cd build

Make superbuild.
24. $ cmake -DADVR-CORE=ON ..

25. $ cmake -DSUPERBUILD_XBotGUI=OFF ..

26. $ make

If the build was successful, you should see populated folders in advr-superbuild/external and
advr-superbuild/build. If it was not, you will see empty folders and/or CMake files from the clone.

5

Running XBotCore
In one terminal, run roscore. In a second terminal, run XBotCore -D. If the command is not found,
change directories to advr-superbuild, source ./robotology-setup.bash and try again.

The XBotCore -D(ummy) command is running the shared object file XBotCore-1.0.0 found in
advr-superbuild/build/install/bin. This is a compiled version of XBotMain.cpp.
(https://github.com/ADVRHumanoids/XBotCore/blob/master/src/XBotMain.cpp)

Since XBotCore does not include its own control algorithms, this is all that will run:

As previously mentioned, XBotCore uses plugins to read from and write to the robot. The XBotMain
function creates a Plugin Handler, responsible for queuing and running RT Plugins, as well as a
Communication Handler, which performs the same job for NRT Plugins.

Both Handlers look for plugins that are listed in the specified YAML configuration file. Before running
XBotCore -D, you can check which configuration is being used with get_xbot_config or set it with
set_xbot_config PATH/TO/CONFIG.yaml. The figure below shows the contents of the
centauro_simple_example configuration file. The only plugin being loaded is HomingExample, a testing
file compiled by the superbuild. This is why the XBotCore -D prints Initializing plugin
HomingExample.

6

https://github.com/ADVRHumanoids/XBotCore/blob/master/src/XBotMain.cpp

In order to use XBotCore for its intended control purposes, we need to create our own plugins.

Understanding Plugins
As described in WALK‐MAN: A High‐Performance Humanoid Platform for Realistic Environments [7],
we can interact with plugins via three interfaces.

1) Switch interface ………. start/stop plugin
2) Command interface ……… send robot command to plugin
3) Status interface ……… receive robot status from plugin

In a complete project (as described in the Control Architecture section), the plugins (previously called
control modules) are manipulated by the GUI. For example, the output of a button press on the GUI may
call the switch interface, which in turn starts the corresponding plugin. Since we are testing plugins in
isolation, we can mimic this behavior from the terminal.

XBotCore’s plugins operate through ROS services. Thus, to call a plugin interface, we simply use
rosservice calls like these:

rosservice call /PLUGIN_NAME_switch 1

rosservice call /PLUGIN_NAME_cmd “turn valve”

We can also print all available plugins with rosservice list.

7

https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21702

Creating a Plugin
Install an IDE for CMake called KDevelop.
1. $ wget -O KDevelop.AppImage

https://download.kde.org/stable/kdevelop/5.2.3/bin/linux/KDevelop-5.2.3-x86_64.

AppImage

2. $ chmod +x KDevelop.AppImage

Generate an XBot Plugin.
3. $ cd advr-superbuild/external

4. $ source ./robotology-setup.bash

5. $ generate_XBot_Plugin.sh PLUGIN_NAME

Write plugin.
6. $./KDevelop.AppImage

7. Open / Import Project and navigate to advr-superbuild/external/PLUGIN_NAME
8. Edit plugin code

Build plugin
9. Change build directory to PATH/TO/advr-superbuild/build/PLUGIN_NAME
10. Right-click on project. Build.

Install plugin in KDevelop
11. Right-click on project. Open Configuration…
12. CMake > Set CMAKE_INSTALL_PREFIX to PATH/TO/advr-superbuild/build/install
13. Right-click on project. Install.

Add plugin to configuration file.
14. Open YAML configuration file
15. Add PLUGIN_NAME to RT or NRT Plugins

To walk-through the structure of a plugin, we will consider the contents of a dummy myPlugin.

init_control_plugin: function called when the Plugin Handler or Communication Handler initializes
this plugin. Add a print statement here std::cout << “myPlugin init done!” << std::endl;

on_start: function called when the switch interface is set to “start” (rosservice call
/myPlugin_switch 1). Here, print the initial position reference std::cout << “Position
reference : ” << _q0 << std::endl;

on_stop: function called when the switch interface is set to “stop” (rosservice call
/myPlugin_switch 0).

control_loop: called on every control loop once the plugin has been started. Here we can parse
command strings sent via the command interface. For example,

if(current_command.str() = “move”){
 std::cout << “Moving...” << std::endl;
}

if(current_command.str() = “turn”){
 std::cout << “Turning...” << std::endl;
}

8

If myPlugin has been set up with the steps described above and added to
centauro_simple_example.yaml, then running XBotCore -D will call a Plugin Handler to initialize it. Here
we see the print statement from init_control_plugin.

Now if we send commands via the switch and command interface, we can check that the plugin is
running as expected from our print statements.

9

Introduction to ROS
As mentioned earlier, XBotCore extends the Robot Operating System (ROS) . This setup provides all 2

ROS capabilities, but packages real-time control operations into a single node called XBotCore. In the
following section, we will focus on non-real time operations (controlling a robot in simulation), and thus
refer to ROS in lieu of XBotCore.

In case the reader is not familiar with ROS, here are some important notes. ROS has a graph-based
structure, where operations are designated to nodes. All nodes are registered to a master roscore and
thus can communicate with each other in a peer-to-peer network. Modes of this communication include
1) topics, to which nodes may publish or subscribe messages asynchronously and 2) services, in which
nodes synchronously call functions of other nodes.

ROS is substantially well-documented. To learn and practice with more information, I recommend the
following books.

1) Programming Robots with ROS by Brian Gerkey, William Smart, Morgan Quigley
2) A Systematic Approach to Learning Robot Programming with ROS by Wyatt S. Newman
3) ROS Basics in 5 Days by Ricardo Téllez, Alberto Ezquerro, and Miguel Ángel Rodríguez

2For a partially complete description of how XBotCore extends standard ROS messages, see
https://github.com/ADVRHumanoids/XBotCore/wiki/XBotCore-ROS-integration

10

https://github.com/ADVRHumanoids/XBotCore/wiki/XBotCore-ROS-integration

Creating a Controllable Robot in ROS
This tutorial will walk through step-by-step how to visualize and control a simulated humanoid. To
access the working code or reference certain files, see https://github.com/alakmazaheri/sim-robot-control

PART 1: Setting Up a Workspace
To facilitate our work in ROS and Python, we will need to set up a catkin workspace.

Create a workspace [name: urdf_ws]
1. $ mkdir -p ~/urdf_ws/src

2. $ cd ~/urdf_ws/src

3. $ catkin_init_workspace

4. $ cd ..

5. $ catkin_make

6. $ source devel/setup.bash

7. $ echo "source ~/urdf_ws/devel/setup.bash" >> ~/.bashrc

Create a package [name: poppy]
8. $ cd ~/urdf_ws/src

9. $ catkin_create_pkg poppy rospy

PART 2: Create a Robot Model
ROS developers use the XML-based Unified Robot Description Format (URDF) for representing robot
models. In this example, we will be modelling the open-source 3D-printable humanoid Poppy. Since she
is open-source, she had an existing URDF file which we have modified for our purposes.

Create a URDF folder for Poppy to live in:
1. $ cd ~/urdf_ws/src/poppy

2. $ mkdir urdf

In this folder, place the modified URDF
poppy.urdf.xacro as found on Github. URDF files are
long and not pleasant to read or create in full, so here is a
quick peek into what is going on inside.

LINKS AND JOINTS:
A robot can be defined as a set links chained together by
joints. For each link, we define visual, collision, and inertial
properties in the URDF.

For each joint, we define its parent and child link. In this
example, the right upper arm link is defined and
connected to the right forearm via the elbow.

11

https://github.com/alakmazaheri/sim-robot-control

Note that Poppy’s visual and collision geometries come from CAD meshes (.STL files). For ease of use,
we have reproduced these files on our Github: urdf_src/poppy/urdf/poppy_meshes. We have to place
these files where the system can find packages, in opt/ros/kinetic/share.

We have encountered an issue where placing the meshes directly into this folder results in them not
being loaded. For a quick fix, run sudo apt-get install ros-kinetic-urdf-tutorial. This will
create a meshes package in opt/ros/kinetic/share/urdf_tutorial. Copy and paste poppy_meshes into this
folder.

TRANSMISSION:
To make the robot controllable, we must also create a transmission component for each defined joint.
Note that this section was not in the original Poppy URDF and was added to control the robot in
simulation.

We will be using the Gazebo simulator to visualize the robot’s behavior. Thus, as final step in the URDF,
we must load the ros_control plugin for Gazebo

12

PART 3: Adding Controllers
How do we make all these joints move? Each joint (or group of joints) will be manipulated via a ROS
controller of our choice. Note that different controllers expect different types of commands.

Let’s create a folder where we can keep our controller configurations (mkdir
~/urdf_ws/src/poppy/config)

When dealing with arms and legs, we generally envision long, fluid motions. For these joint groups, we
will use trajectory controllers. For the torso and head, position controllers are fine.

A YAML configuration file (poppy_controllers.yaml) will specify these controllers and their
associated joints.

PART 4: Launching
Create a folder for your launch files: mkdir ~/urdf_ws/src/poppy/launch.

main.launch is what you will be calling from terminal. It begins by calling a secondary launch file
gazebo.launch, which creates a ROS node that runs the Gazebo simulator and loads a robot model
from your URDF. <node name="urdf_spawner" pkg="gazebo_ros" type="spawn_model"… >
Once this is done, main.launch spawns the controllers needed to manipulate that robot.

<rosparam command="load" file="$(find poppy)/config/poppy_controllers.yaml"/>

<node name="poppy_controller_spawner" pkg="controller_manager" type="spawner"

args="left_arm_controller

 right_arm_controller

 head_controller

 torso_controller

 left_leg_controller

 right_leg_controller

 joint_state_controller

 --shutdown-timeout 3"/>

13

To see this in action, run roslaunch poppy main.launch .An empty Gazebo world will open with 3

Poppy in a default position. To facilitate testing, we have fixed Poppy’s pelvis to the world frame in the
URDF. To make her free to move (and fall over), simply comment out the world link and world joint in the
URDF.

3 If you get an error that main.launch is neither a launch file in package poppy nor is poppy a launch
file name, try source devel/setup.bash again.

14

PART 5: Controlling
View the controllers you created from terminal with rostopic list.

CONTROLLING FROM TERMINAL
Publish to each controller topic according to its unique message type. You can check a message type
with rostopic type /TOPIC_NAME

Here is an example trajectory message for the left arm.

rostopic pub /left_arm_controller/command trajectory_msgs/JointTrajectory

'{joint_names: ["l_shoulder_y", "l_shoulder_x", "l_arm_z", "l_elbow_y"],

points: [{positions: [1.5, -1.5, 1.75, 1.75], time_from_start: [1.5, 0.0]},

{positions: [-1, 1.5, 1.2, -1.5], time_from_start: [2.0, 1.0]}]}' -1

CONTROLLING FROM SCRIPT
In an executable Python script, initialize a ROS node and publish to your desired topic.

rospy.init_node('[NODE NAME]')

pub = rospy.Publisher('[TOPIC NAME]', [MESSAGE TYPE, queue_size=1)

pub.publish(MESSAGE)

15

For an example of this, see run.py in the urdf_ws/src/poppy/scripts folder. Poppy will move her legs in a
continuous trajectory to feign running.

In addition to this visual confirmation in Gazebo, we can check that Poppy’s joint positions are changing
by subscribing to the ROS topic joint_states. The command rostopic echo /joint_states outputs
a continuous stream of joint positions, velocities, and efforts.

Since Poppy is a bipedal robot with many degrees of freedom, we don’t have as many simple scripts to
demonstrate multitasking capabilities. To see a mobile robot that can perform navigation in conjunction
with manipulation, refer to our R2D2 package. It was created from the same general process as Poppy,
adapted from the ROS tutorial Building a Visual Robot Model with URDF from Scratch.

roslaunch r2d2 main.launch

cd urdf_ws/src/r2d2/scripts

./drive_gripper or ./arm_traj.py

A Note on Trajectories:
We previously mentioned two methods of ROS communication: topics and services. Generally speaking,
if you send a command via a topic or service, it must be completed before you can execute the next
command. To work around this, ROS implements a third communication process called actions. These
are time-extended and goal-oriented tasks; you can specify an action and it will run until it completes its
goal in parallel with other processes.

Since trajectories can be time-extending, the trajectory controller implements both a topic interface and
an action interface. ROS topics with the extension /follow_joint_trajectory/[cancel]
[feedback] [goal] [results] [status] are manifestations of the action interface.

Knowing that this will prove useful for navigation and manipulation tasks, we attempted to implement a
simple action for an arm trajectory. This still requires more work to make operational, but the shell for its
client and server based interaction can also be found in the scripts folder.

16

http://wiki.ros.org/urdf/Tutorials/Building%20a%20Visual%20Robot%20Model%20with%20URDF%20from%20Scratch

Higher-Level Control: IK Engine
The previous section described low-level control in ROS. Building higher-level processes requires
significantly more coding and development. In this final ROS section, we will show a simple type of
higher-level control that is already provided by the ROS MoveIt! Software: inverse kinematics (IK).

Install MoveIt! for ROS Kinetic
1. $ sudo apt-get install ros-kinetic-moveit

2. $ source /opt/ros/kinetic/setup.bash

Now, follow the Configure MoveIt steps found in the Programming Robots with ROS book (a full PDF is
available online). Adapt the Cougarbot name and joint references for your Poppy counterparts.

To execute, run each command in a separate terminal:
roslaunch poppy main.launch

roslaunch poppy_moveit_config move_group.launch

roslaunch poppy_movet_config moveit_rviz.launch config:=True

Congratulations! You now have a robot model that is controllable through both direct joint trajectories
and end effector target locations. 4

4 It is possible to import the MoveIt IK operations into a Python script (see Chapter 11 in the
Programming Robots with ROS book), but you run the frequent risk of generating impossible-to-reach
trajectories without the GUI, in which case the script will simply not execute. We have yet to implement
this successfully for the Poppy Humanoid. The NASA R2 robot that is used in the book has since been
removed from its open source location and thus also leads to a host of challenges in following their listed
instructions.

17

http://marte.aslab.upm.es/redmine/files/dmsf/p_drone-testbed/170324115730_268_Quigley_-_Programming_Robots_with_ROS.pdf#%5B%7B%22num%22%3A1031%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2Cnull%2C308.08408%2Cnull%5D
http://marte.aslab.upm.es/redmine/files/dmsf/p_drone-testbed/170324115730_268_Quigley_-_Programming_Robots_with_ROS.pdf
http://marte.aslab.upm.es/redmine/files/dmsf/p_drone-testbed/170324115730_268_Quigley_-_Programming_Robots_with_ROS.pdf#%5B%7B%22num%22%3A515%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2Cnull%2C462.82361%2Cnull%5D

Projects Using XBotCore
We now have some experience with creating URDF robot descriptions and ROS controllers. Both will be
extremely useful tools for building on top of XBotCore in the future.

Are there any open-source projects that have built on top of XBotCore already? Perhaps. The XBot
superbuild does not only contain the XBotCore software platform. In fact, it appears to have a huge
database of control algorithms, robot models, user interfaces, and walking/manipulation examples out of
other IIT projects.

When we installed XBotCore, we turned off the CMake GUI and only installed the bare minimum to run
XBotCore. Now, navigate to the advr-superbuild/build folder and run ccmake .. to see the GUI in full.

18

You can scroll through all the available projects and toggle them ON/OFF with the enter key. Press [c] to
configure sub-dependencies until the option to press [g] to generate appears. This will exit the GUI. Now
run make from terminal to build all of the projects you have turned on.

We have attempted to compile the WALK-MAN project, its predecessor BIG-MAN, and the Centauro
robot for testing. Unfortunately, every additional project that is turned on comes with a host of build
errors to work through. At this time, the documentation does not exist to work through these errors.
Thus, while XBot-related projects may prove useful, their pursuit will require a substantial time
investment.

19

IHMC Open Robotics Software

Overview
As an open-source initiative, the Institute for Human and Machine Cognition (IHMC) has published the
near-complete control code from their DRC entry. This robotics software contains legged locomotion 5

algorithms for walking and an optimized momentum-based controller core for managing multiple tasks.

Our goal is to understand the workings of this software so that we can adopt and eventually adapt it. At
the present time, its source code is disorganized and documentation lacking. Existing resources clue us in
on how to run specific demonstrations, such as how to make NASA’s Valkyrie robot walk. Beyond this,
the software is highly impenetrable. In this section, we report on our efforts to:

1) Gain a basic understanding of IHMC’s control architecture.
2) Familiarize ourselves with the organization of the code. We want to map our theoretical

understanding into the exact lines of code that implement it, so that we can swap out algorithms.
3) Identify low-level communication to a simulator or physical robot.
4) Add and execute high-level behaviors (e.g. turn valve, open door, walk to location).

Quick Start Demonstration

For an initial demonstration of its abilities, IHMC provides thorough instructions for setting up a walking
simulation of the Valkyrie robot. Follow the Quick Start steps from ihmcrobotics.github.io, but make sure
to download the newest version of Eclipse for Java Developers (Photon R instead of Mars 2).

5 It excludes the operator interface and low level hardware drivers to interface with Boston Dynamics’
Atlas robot.

20

https://ihmcroboticsdocs.github.io/ihmc-open-robotics-software/docs/00-pre-reqs-eclipse.html
http://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/photonr

How it Works

PART 1: The Basics
We can represent any robot in IHMC using the Robot class. This class contains all of the joint and link
information needed to fully model the robot in any configuration at any time. We will alter the state of the
robot via Robot Controllers. What constitutes a Robot Controller is very loosely defined; we only require
that it contains an initialize and a real-time doControl function. IHMC’s in-house simulator, the
Simulation Construction Set (SCS), is responsible for both visualizing the current robot state and calling
any active Robot Controllers to execute their doControl function in real-time.

For now, think of IHMC’s control schema as a black-boxed Robot Controller. When we run the SCS GUI
and press simulate, it asks IHMC to perform its doControl function. In turn, IHMC looks for
user-specified commands and maps them into desired joint movements. SCS takes these values and
updates the robot model accordingly. The process continues to loop until the user stops the program.

PART 2: The Control
What is happening in the IHMC black box? How does it handle complex, whole-body tasks?

The Robot Controller we abstracted IHMC to is actually called a High Level Humanoid Controller
Manager . It contains a very high-level state machine with only two options: “Do Nothing” or “Walking”. 6

This terminology is misleading, as the walking state actually manages all aspects of the body. It can, for
example, manipulate the robot’s arms without moving its legs. We will almost always be in the
“Walking” state.

The first task of the Controller Manager’s doControl function is to confirm the current high-level state.
It checks for a user command requesting a transition, then runs the doAction function of the current
state. Given the predominance of the “Walking” state, we will only examine this behavior.

6 You can find the source code for this class in your Gradle Project under
Project and External Dependencies > CommonWalkingControlModules-0.9.0.jar >
us.ihmc.commonWalkingControlModules.highLevelHumanoidControl.
From now own, we will refer to the location of important source code using the us.ihmc package
notation.

21

The walking behavior is implemented by a Walking High Level Humanoid Controller , often referred to as 7

a Walking Controller. In its doAction function, the Walking Controller reads in a variety of
user-specified commands and distributes them to different managers. Managers exist to
compartmentalize the control of various robot subsystems. For example, Head and Neck Trajectory
Commands are sent to the Head Manager, while Arm and Hand Trajectory Commands8 are sent to the 8

Manipulation Manager.

Once all managers have internalized their commands, doAction calls updateManagers. This function
makes each manager internally map their given commands into computable motion objectives (desired
accelerations and momentum values) that are compatible with the IHMC Controller Core.

7 us.ihmc.commonWalkingControlModules.highLevelHumanoidControl.highLevelStates
8 us.ihmc.humanoidRobotics.communication.controllerAPI.command (IHMCHumanoidRobotics-0.9.0.jar)

22

The Walking Controller’s doAction function has now completed, so we return to the High Level
Humanoid Controller Manager’s doControl.

Here, we submit our generated list of motion objectives to the Whole Body Controller Core . The 9

controller core sends these commands to a Whole Body Inverse Dynamics Solver9, resolves conflicting
joint instructions with a QP solver , and outputs desired torques. For more details on the Controller Core, 10

see Design of a Momentum-Based Control Framework and Application to the Humanoid Robot Atlas [1]
or https://ihmcroboticsdocs.github.io/ihmc-open-robotics-software/docs/01-controllercore.html.

Now, the Simulation Construction Set can update the robot model by applying the calculated torques at
each joint. We have successfully used the entire IHMC schema to send commands to the robot.

9 us.ihmc.commonWalkingControlModules.controllerCore
10 us.ihmc.commonWalkingControlModules.momentumBasedController.optimization

23

https://www.researchgate.net/publication/280839675_Design_of_a_Momentum-Based_Control_Framework_and_Application_to_the_Humanoid_Robot_Atlas
https://ihmcroboticsdocs.github.io/ihmc-open-robotics-software/docs/01-controllercore.html

PART 3: The Demonstration

When you ran Valkyrie Demo from the Quick Start section, you successfully implemented all of this
control architecture. How is this possible? The demo only had a few lines of code, and none of them
mentioned a robot controller. The answer is that the Valkyrie Demo hinges upon the DRC Flat Ground
Walking Track . If you follow the declaration of this class, you will see the function calls: 11

createAvatarSimulation > setupControllerThread > createMomentumBasedController >
getController. This getController function returned a High Level Humanoid Controller Manager,
initializing the entire IHMC flow.

11 us.ihmc.avatar (IHMCAvatarInterfaces-0.9.0.jar)

24

User Commands
A key activator in this process is the user providing commands to the Command Input Manager. How
does this happen? Submitting a message to the Command Input Manager most often occurs through
SCS YoVariables. Many of these variables begin with the word user. We can input desired poses (e.g.,
change the values of userDesiredFootPose[X][Y][Z][Yaw][Pitch][Roll]) and execute them
(e.g., with the boolean userDoFootPose). Pose options which execute individual trajectories are
available for the hand, foot, chest, and pelvis.

25

Additionally, we can specify footstep parameters for controlled walking. For example, if we change
userDesiredStepLength to 0.5, userDesiredStepYaw to 0.25, userDesiredStepsToTake to 4.0,
and userDesiredStepSend to 1.0 (true), the robot will take four steps on our specified curved path and
then stop. We can further alter which foot the robot starts with, the timing of each step, and so on. This
is a highly controllable alternative to the the continuous walking motion initiated by the walk variable
from the Quick Start Demonstration.

26

Where are these user capabilities set up? When we configured the Momentum Based Controller , there 12

was an option to enable user input, set to true by default. This created a User Desired Controller
Command Generator which in turn started the User Desired Command Generators13 for the chest, foot, 13

hand, and pelvis. Each initialized their own user labeled YoVariables. For example, the User Desired Foot
Pose Controller Command Generator13 is what allowed us to change the desired X, Y, Z, Yaw, Pitch, and
Roll values of either foot. When we changed the boolean value of userDoFootPose, the
variableChanged function submitted these values to the Command Input Manager.

For long-term use, the TREC Lab may seek to create a Operator Interface by which to more intuitively
specify commands. We should know how to send messages to the Command Input Manager directly and
how to build off of these command generators. For more examples of submitting messages to the
Command Input Manager , open the call hierarchy of its submitCommand function. 14

USER SCRIPT

Thus far, we have only focused on controlling the robot directly from the Simulation Construction Set.
However, the IHMC framework also allows XML files of desired command sequences to be run
independently.

According to IHMC’s report DARPA Robotics Challenge (DRC) Using Human-Machine Teamwork to
Perform Disaster Response with a Humanoid Robot [5], a “record” feature can automatically serialize all
communication received from the UI into an XML script. It then allows for adaptable playback of these
complex movements at any time.

These features extend IHMC’s Operator Interface, and thus are not included in the Open Robotics
Software. However, the mechanism to parse XML files is captured by the Script Based Controller
Command Generator . This converts a script’s object stream into IHMC controller core commands. A 15

potential next step for the TREC Lab is to create and execute such XML scripts to further automate our
control process.

12 See the getController function in the Momentum Based Controller Factory:
 us.ihmc.commonWalkingControlModules.highLevelHumanoidControl.factories
13 us.ihmc.commonWalkingControlModules.controllerAPI.input.userDesired
14 us.ihmc.communication.controllerAPI (IHMCCommunication-0.9.0.jar)
15 us.ihmc.humanoidBehaviors.behaviors.scripts.engine (IHMCHumanoidBehaviors-0.9.0.jar)

27

http://www.dtic.mil/dtic/tr/fulltext/u2/1027886.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/1027886.pdf

High-Level: Behaviors
Of course, we do not want to stop at specifying trajectory commands for each robot limb. Ideally, we
instruct the robot to perform an abstract task (e.g. open door) and the system internally maps this into
limb trajectories and then to low-level controller objectives.

A major benefit of using IHMC is that they have already developed some key behaviors, including DRC
tasks like opening doors and turning valves as well as goal-based tasks like walking to a location. Our
next major undertaking is to understand these high-level behaviors.

For this effort, we will turn our attention away from the Valkyrie Demo and focus on the Open
Humanoids Simulator . The Open Humanoids Simulator sets up and accesses the IHMC control schema 16

slightly differently than the Valkyrie Demo. Instead of creating an Avatar Simulation through the DRC
Flat Ground Walking Track, the Open Humanoids Simulator creates a DRC Simulation Starter. The DRC
Simulation Starter’s createAvatarSimulation function sets up the SCS, GUI, and Momentum Based
Controller Factory internally.

The advantage of the DRC Simulation Starter is that it also creates a DRC Network Processor. This sets
up a bunch of interesting modules (UI, Sensor, ROS, Text to Speech, LIDAR, etc.). Among them, we
enable the Behavior Module to run high-level tasks. To learn more about the Network Processor and the
speed of the illustrated communication, read Summary of Team IHMC's virtual robotics challenge entry
[2].

In this section, we will be editing the Open Humanoids Simulator script and some other pertinent
behavior classes. Since we can not edit these .class files, we need to create an identical Java Class in our
Gradle project (.java) and make changes to the uncompiled version. If the filename and package exactly
match the compiled version, it will always be called instead of its .class equivalent.

16 us.ihmc.valkyrie (Valkyrie-0.9.0.jar)

28

https://www.researchgate.net/publication/256422371_Summary_of_team_IHMC%27s_Virtual_Robotics_Challenge_entry?enrichId=rgreq-80ae16acf0cdec490c6b0f046d30d45e-XXX&enrichSource=Y292ZXJQYWdlOzI1NjQyMjM3MTtBUzoxMDQwNzI0MjIxMDA5OThAMTQwMTgyNDIwNzgxNw%3D%3D&el=1_x_3&_esc=publicationCoverPdf

There is an import issue in the Open Humanoids Script which we will ignore for now. The import
org.ros.internal.message.Message returns an error, so for preliminary testing comment it out as
well as all of the ROS lines that depend on it.

DIAGNOSTIC BEHAVIOR

We will first use the Open Humanoids Simulator in its Automatic Diagnostic mode. In the main function,
change its first boolean argument (runAutomaticDiagnosticRoutine) to true.

Run the script. Recall from the Quick Start Demonstration that Java Applications must be run with a
custom configuration. To create this for the Open Humanoids Simulator, select Run Configurations
and create a new Java Application. In the application that is made, add “-Xms4096m -Xmx4096m”
to VM arguments, so the simulator has enough memory to run.

Now you can execute the Open Humanoids Simulator. When you do so, you will be creating an IHMC
Humanoid Behavior Manager . The exact call hierarchy is OpenHumanoidsSimulator > 17

simulationStarter.startSimulation > createSimulation >

startNetworkProcessor > DRCNetworkProcessor >

setupBehaviorModule > IHMCHumanoidBehaviorManager.

The IHMC Humanoid Behavior Manager creates a very important Behavior Dispatcher . The Behavior 18

Dispatcher is responsible for managing a Behavior State Machine (this is different from the high-level
state machine we encountered earlier). Essentially, we can register every possible high-level behavior as
a state. Then, when we request a behavior to run, the dispatcher is responsible for transitioning to and
executing that state. By default, the state machine only has one state: a Do Nothing Behavior.

Once we initialize the state machine, we can populate it with our custom behaviors. The IHMC Humanoid
Behavior Manager will do this either through the function createAndRegisterAutomaticDiagnostic
or createAndRegisterBehaviors.

Since we are starting simple with the Automatic Diagnostic mode, we will run
createAndRegisterAutomaticDiagnostic. It creates a single Diagnostic Behavior and adds it to 19

the state machine with dispatcher.addBehavior(...). In order to transition from the Do Nothing
Behavior to our Diagnostic Behavior, we request it from the dispatcher with
dispatcher.requestBehavior(...). This requestBehavior function is the key to starting
behaviors. For a high-level GUI, we want a RUN button to execute dispatcher.requestBehavior.

17 us.ihmc.humanoidBehaviors (IHMCHumanoidBehaviors-0.9.0.jar)
18 us.ihmc.humanoidBehaviors.dispatcher
19 us.ihmc.humanoidBehaviors.behaviors.diagnostic

29

What does the Diagnostic Behavior do? Actually, it can do a lot of things. There are a host of Diagnostic
Tasks which use sequenced limb movements to emulate higher level operation.

It will be helpful at this point to take a break and look through the contents of these functions. They quite
literally are sequences of submitting hand, foot, chest, and pelvis poses, positions, and orientations. We
can take these “submit” functions at their word, or we can work through their implementation. If you
choose the latter, be warned that the notation gets a bit dense. The short version is that something like
an Arm Trajectory Message will contain the key information about manipulating target limbs. An Arm
Trajectory Behavior will know how to send packets to the Network Processor. A Trajectory Task takes
as input a Trajectory Message and a Trajectory Behavior. Once a Trajectory Task is submitted to the
Pipeline, it has been sent to the robot.

What actually runs in a Diagnostic Behavior? In the doControl function (run when we enter the
Diagnostic Behavior state), we start with an Automatic Diagnostic Routine. We can change this routine
by calling a sequence in the automaticDiagnosticRoutine function. The default
sequenceSimpleWarmup takes some time to run, so you may want to change this to the shorter
sequenceSquats.

Then, we handle the requested diagnostic behavior. We can provide an initial request when we declare
the Diagnostic Behavior with requestedDiagnostic.set(DiagnosticTask.KARATE_KID). This
initial request will be run immediately after the Automatic Diagnostic Routine.

Now if we run Open Humanoids Simulator and press simulate, we will see the robot do a squat, then
perform the karate kid behavior. After it has completed both, it will continue to loop through Diagnostic
Behavior’s doControl function. We will not see any more movement, because nothing is being
requested.

To run another sequence, we must submit a new requested diagnostic using the
requestDiagnosticBehavior function. Again, this would make for a great button on a high-level GUI.

30

DRC BEHAVIORS

Now we leave the world of Diagnostic Behaviors. Back in the Open Humanoids Simulator, change the
boolean argument runAutomaticDiagnosticRoutine to false. In public
OpenHumanoidsSimulator, add these two lines:

networkProcessorParameters.enableBehaviorModule(true);

networkProcessorParameters.enableBehaviorVisualizer(true);

These parameters were already set in the Diagnostic version. The first line allows us to create the IHMC
Humanoid Behavior Manager which launched the Behavior Dispatcher and everything followed. The
second line should enable the relevant behavior YoVariables to appear on the SCS GUI.

The IHMC Humanoid Behavior Manager will again initialize the Behavior Dispatcher and a Behavior State
Machine with a single Do Nothing state. However, since we are not in the diagnostic mode, we will now
run the IHMC Behavior Manager’s createAndRegisterBehaviors function. This adds many behaviors
to the state machine, including a Diagnostic Behavior, but also Pick Up Ball, Turn Valve, Walk Through
Door and many more. Each behavior that is added (with dispatcher.addBehavior) is connected to
every other state such that we can always transition to any behavior.

Take a few moments here to examine the contents of each Behavior class. You can open them directly
from the IHMC Humanoid Behavior Manager using the Open Declaration (F3) tool, or find many of them
in us.ihmc.humanoidBehaviors.behaviors.complexBehaviors.

Complex behaviors are built up from the primitive behaviors we have already encountered. For example,
the BasicPipeLineBehavior uses WalkToLocation and GoHome Behaviors from the Diagnostic
Tasks. The DRC Valve Task (TurnValveBehaviorStateMachine) concatenates other complex
behaviors: searchForValve, walkToInteractableObject, resetRobot, graspAndTurnValve.
These, in turn, are sets of primitive Trajectory Behaviors.

We will now be editing the IHMC Humanoid Behavior Manager’s createAndRegisterBehaviors
function. First, comment out the entire block pertaining to the Blob Filtered Sphere Detection Behavior.
This requires OpenCV tools that we have not set up, and will return a fatal error if included . 20

After the behaviors have been added to the dispatcher, also insert the line:
dispatcher.requestBehavior(HumanoidBehaviorType.TEST_PIPELINE);
This will start our desired behavior upon running Open Humanoids Simulator.

20 We attempted to add missing OpenCV .jar dependencies with the following instructions
https://udallascs.wordpress.com/2014/03/30/adding-opencv-and-configuring-to-work-with-eclipse-and
-java/, but it did not resolve the error:

Java HotSpot(TM) 64-Bit Server VM warning: You have loaded library /home/.../libopencv_java310.so
which might have disabled stack guard. The VM will try to fix the stack guard now.
It's highly recommended that you fix the library with 'execstack -c <libfile>', or link it with '-z
noexecstack'.
/home/.../libopencv_java310.so: libIlmImf.so.6: cannot open shared object file: No such file or directory
Exception in thread "main" java.lang.UnsatisfiedLinkError: Cannot load org/opencv/opencv_java310

31

https://udallascs.wordpress.com/2014/03/30/adding-opencv-and-configuring-to-work-with-eclipse-and-java/
https://udallascs.wordpress.com/2014/03/30/adding-opencv-and-configuring-to-work-with-eclipse-and-java/

We can further edit our chosen behavior, in this case BasicPipeLineBehavior . For now, let’s change 21

the target pose to walk to from (0,0) to (5,1).

Now run OpenHumanoidsSimulator. In the Console, print statements should show that the IHMC
Humanoid Behavior Manager is initializing and behaviors are loading.

[INFO] (DRCNetworkProcessor.java:361): Connecting to controller using intra process

communication

[INFO] IHMCHumanoidBehaviorManager: Initializing

[INFO] (ObjectDetectorFromCameraImages.java:173): Attempting to connect to valve

detector...

PickUpBallBehaviorStateMachine queue size 1

After pressing simulate, we will see Valkyrie walk to position (5,1).

We can run behaviors like TEST_PIPELINE, TEST_STATEMACHINE, and EXAMPLE_BEHAVIOR out of
the box. The other behaviors require building a DRC environment with interactable objects (a door, valve,
ball, fiducial marker, etc.).

Future work in this area should include setting up such an environment and creating custom behaviors.
Ultimately, we want to create our own Operator Interface that allows us to click on target objects and
launch high-level operations.

21 us.ihmc.humanoidBehaviors.behaviors.complexBehaviors

32

Low-Level: Using the Controller Core

For those not interested in the entire IHMC software stack, this section explains how to use its Whole
Body Controller Core in isolation to perform low-level control.

Recall that the Simulation Construction Set updates its environment by running active Robot Controllers.
Instead of using IHMC’s High Level Controller Manager, we will create a low-level Robot Arm Controller.

For joint-space operation, doControl creates a Jointspace Feedback Control Command with desired
joint positions and velocities. For task-space operation, doControl creates a Spatial Feedback Control
Command with desired position, orientation, linear and angular velocities of the end effector. In either
case, the Feedback Control Command is then translated to a Controller Core Command, which in turn is
submitted to the Whole Body Controller Core.

The Whole Body Controller Core is an extremely useful tool because it performs all of the computations
to transform desired motion objectives to joint torque outputs. With an additional integrator tool, it also
outputs the desired position and velocity of each joint. Thus, the user can update the robot model by
setting the desired effort or joint configuration.

To dig into examples of creating a robot controller and accessing the Whole Body Controller Core, follow
the steps of this tutorial: https://github.com/ihmcrobotics/dynamic-walking-tutorial-2018/wiki. Pay
special attention to the RobotArmThreeController. I highly recommend tracing the bolded steps of its
doControl function with the Open Declaration (F3) tool.

 public void doControl()
 {

...

// Create a task space command

SpatialFeedbackControlCommand command = new SpatialFeedbackControlCommand();
 command.set(desiredEndEffectorPosition, desiredEndEffectorLinearVelocity);
 command.set(desiredEndEffectorOrientation, desiredEndEffectorAngularVelocity);

// Create the controller core command equivalent

ControllerCoreCommand controllerCoreCommand = new
ControllerCoreCommand(controllerCoreMode);

 controllerCoreCommand.addFeedbackControlCommand(command);

// Submit objectives to be achieved to the controller core. This internally

submits a command to the ID Solver, which maps objectives into desired

accelerations, in turn sent to the QP solver

 wholeBodyControllerCore.submitControllerCoreCommand(controllerCoreCommand);

// Run WBCC computations. This asks the ID Solver to compute, which calls upon

the QP solver.

 wholeBodyControllerCore.compute();

// Return desired torque, position and effort for this tick of the control loop

 JointDesiredOutputListReadOnly outputForLowLevelController =

wholeBodyControllerCore.getOutputForLowLevelController();

// Write the controller output to the simulated joints (iterated by jointEnum)

...

 robotArm.setDesiredEffort(jointEnum,jointDesiredOutput.getDesiredTorque());
 }

33

https://github.com/ihmcrobotics/dynamic-walking-tutorial-2018/wiki

34

Accessing the ORS
As shown by the Valkyrie Demo, you do not need to clone and build IHMC’s code from their Github in
order to access the Open Robotics Software (ORS). The critical step in lieu of this process was adding a
compile dependency statement (us.ihmc:Valkyrie:0.9.0)in the build.gradle file. This downloads
IHMC’s .jar and .pom files which are the compiled versions of what you can see on Github.

Let’s extend this process for another simulation - say, ValkyriePushRecoveryTrack . Looking at the 22

import statements, we see we are missing packages like Euclid, YoVariables, and SimulationToolkit.

We can find the exact names in http://dl.bintray.com/ihmcrobotics/maven-release/us/ihmc/ and add the
statements as follows:

 compile 'us.ihmc:euclid:0.8.2'

 compile 'us.ihmc:ihmc-yovariables:0.3.4'

 compile 'us.ihmc:SimulationConstructionSet:0.9.0'

To use Maven successfully, we make the following changes under Window > Preferences.

Finally, to update our dependencies, right-click on the Gradle Project ValkyriePushRecoveryTask resides
in, and run Gradle > Refresh Gradle Project. The Progress and Console tabs will show the ORS
downloads occuring.

We can view our downloads at any time by expanding the Project and External Dependencies folder on
the Package Explorer.

22 https://github.com/ihmcrobotics/ihmc-open-robotics-software/blob/develop/valkyrie/
src/main/java/us/ihmc/valkyrie/simulation/ValkyriePushRecoveryTrack.java

35

http://dl.bintray.com/ihmcrobotics/maven-release/us/ihmc/
https://github.com/ihmcrobotics/ihmc-open-robotics-software/blob/develop/valkyrie/src/main/java/us/ihmc/valkyrie/simulation/ValkyriePushRecoveryTrack.java
https://github.com/ihmcrobotics/ihmc-open-robotics-software/blob/develop/valkyrie/src/main/java/us/ihmc/valkyrie/simulation/ValkyriePushRecoveryTrack.java

BUGS:

It is worth noting that the IHMC code has some errors that appear due to updating inconsistency; we
actually have to make a few changes to make ValkyriePushRecoveryTrack work.

1) DRC Robot Target

The avatar package for Valkyrie does not have a robot target. You can check this by expanding Project
and External Dependencies > IHMCAvatarInterfaces-0.9.0.jar > us.ihmc.avatar.drcRobot.

To fix, first ensure you have the following import statement:
import us.ihmc.avatar.drcRobot.DRCRobotModel

Now remove the Robot Target import statement:
import us.ihmc.avatar.drcRobot.RobotTarget

When you import the robot model, change
new ValkyrieRobotModel(RobotTarget.SCS, false) to
new ValkyrieRobotModel(DRCRobotModel.RobotTarget.SCS, false)

2) Floating Root Joint Robot

Similar to the above issue, we need to import Floating Root Joint Robot from Simulation Construction Set
instead of Simulation Construction Set Tools.

import ...simulationConstructionSetTools.util.HumanoidFloatingRootJointRobot →
import us.ihmc.simulationconstructionset.HumanoidFloatingRootJointRobot;

2) Vector 3D vs. Vector 3d

The Euclid 3D vector has different parameters than the Javax 3d version. Though the script imports
Euclid, it uses the Javax version. So add the import statement import javax.vecmath.Vector3d and
change all references of Vector3D to Vector3d.

3) Casting YoVariables

The simulation construction set getVariable returns YoVariable<?>. For some reason, we get an error
trying to cast this into a Boolean YoVariable. If you go to the source for this, there is a comment about
how casting makes an angel lose it wings. We don’t want this for angels, so for now just comment out all
references to the YoVariable enable. This isn’t the best practice either, but the script can run without it.

Now ValkyriePushRecoveryTrack should run. Simulate walking as with ValkyrieDemo and press
PushRobot when ready to apply the external force.

Valkyrie to THOR
Though not on the Github like Valkyrie or Atlas, Thor and Escher are also supported by IHMC. Their files
can be found on the Maven link http://dl.bintray.com/ihmcrobotics/maven-release/us/ihmc/ and included
accordingly.

Unfortunately running these simulation classes also returns errors due to outdated import statements.
See the Marvin computer for a successful Thor simulation.

36

http://dl.bintray.com/ihmcrobotics/maven-release/us/ihmc/

Projects Using IHMC
The Open Humanoids Project (https://github.com/openhumanoids) out of MIT and the University of
Edinburgh appear to be adapting MIT’s control work from DRC to use with IHMC’s controller core. Their
Github wiki serves as a guide to operating IHMC on the physical Valkyrie robot.
https://github.com/openhumanoids/wiki/wiki

A key feature of this work is MIT’s user interface: The Director. To read about this software, see Director:
A User Interface Designed for Robot Operation with Shared Autonomy [3]. We hoped that by adopting
the MIT/IHMC schema, we could easily instruct high-level IHMC capabilities and begin to work with the
capabilities of an advanced UI.

To install these software tools and link them together, we followed Open Humanoid’s instructions “To
run Valkyrie paired with Drake Designer UI” on their Github Wiki:
https://github.com/openhumanoids/wiki/wiki/Installing-IHMC's-Atlas-and-Valkyrie-Codebase

We have already installed IHMC ORS, so we can run NetworkParametersCreator. The next step is to
install the Open Humanoids Software. Unfortunately, at the time of writing this report, the provided
“Install OpenHumanoids” link is broken. Instead, we followed the README instructions in the oh-distro
repository https://github.com/openhumanoids/oh-distro, which contains the Director and Drake (MIT
control software). The first line heeds us “don’t expect this to work!” and indeed, we have not gotten it
operational. We followed the steps as best we could (without having licenses for MATLAB, MOSEK, or
Gurobi).

37

https://github.com/openhumanoids
https://github.com/openhumanoids/wiki/wiki/
http://groups.csail.mit.edu/robotics-center/public_papers/Marion16.pdf
http://groups.csail.mit.edu/robotics-center/public_papers/Marion16.pdf
https://github.com/openhumanoids/wiki/wiki/Installing-IHMC's-Atlas-and-Valkyrie-Codebase
https://github.com/openhumanoids/oh-distro

To establish a bridge, the Wiki instructs us to run roscore and the procman process manager. Perhaps
due to our incomplete installation, the bot-procman-sheriff command is not recognized by default.
To use procman, follow these additional steps:

1) $ git clone git@github.com:RobotLocomotion/libbot.git
2) $ cd libbot

3) $ sudo make BUILD_PREFIX=/usr/local -j

4) Add the following to .bashrc

a) PATH=$PATH:~/libbot/build/bin

b) export PATH

Now cd ~/oh-distro/software/config/val_sim_scs and run bot-procman-sheriff -l
robot.pmd. In the window that pops up, go to scripts in top toolbar and run “ui_script”.

38

mailto:git@github.com

This should launch the Director, planners, and IHMC bridge, but instead returns errors for “No such file or
directory” for each.

This is almost certainly due to the broken installation process. If one follows the installation for Director a
standalone software (https://github.com/RobotLocomotion/director), then Director runs with commands
such as build/install/bin/directorPython src/python/tests/testMainWindowApp.py

23

23 https://github.com/RobotLocomotion/director/issues/609

39

https://github.com/RobotLocomotion/director
https://github.com/RobotLocomotion/director/issues/609

Conclusions

We conclude this phase with two software platforms ready and operational. For use moving forward, we
recommend the IHMC Open Robotics Software. Having identified the key components in its control
architecture, we can now adapt them for the TREC Lab’s use.

Certainly, more developmental work is required to generate our own high-level behaviors and to pair the
IHMC software with custom hardwire drivers. However, the XBotCore alternative requires significantly
more algorithm development and coding to achieve even our baseline control purposes.

We must also consider that without an operational robot to test the solutions, it is difficult to draw solid
conclusions about the real-time efficacy of either software.

In this vein, our future plans include developing a full simulation of THOR in the DRC environment,
testing and further developing real-time commands on a microcontroller, and ultimately controlling a full
physical robot to perform high-level tasks.

40

References

[1] Koolen, T. et al. "Design of a momentum-based control framework and application to the humanoid
robot Atlas" International Journal of Humanoid Robotics

[2] Koolen, T. et al., "Summary of Team IHMC's virtual robotics challenge entry," 2013 13th IEEE-RAS
International Conference on Humanoid Robots (Humanoids), Atlanta, GA, 2013, pp. 307-314.
doi:10.1109/HUMANOIDS.2013.7029992

[3] Marion, P. , Fallon, M. , Deits, R. , Valenzuela, A. , Pérez D'Arpino, C. , Izatt, G. , Manuelli, L. , Antone,
M. , Dai, H. , Koolen, T. , Carter, J. , Kuindersma, S. and Tedrake, R. (2017), Director: A User Interface
Designed for Robot Operation with Shared Autonomy. J. Field Robotics, 34: 262-280.
doi:10.1002/rob.21681

[4] Muratore, Luca & Laurenzi, Arturo & Mingo Hoffman, Enrico & Rocchi, Alessio & G Caldwell, Darwin &
Tsagarakis, Nikos. (2017). On the Design and Evaluation of XBotCore, a Cross-Robot Real-Time
Software Framework. Journal of Software Engineering for Robotics. 8. 164-170.
10.6092/JOSER_2017_08_01_p164.

[5] Pratt, J. “DARPA Robotics Challenge (DRC) Using Human-Machine Teamwork to Perform Disaster
Response with a Humanoid Robot”. Florida Institute for Human and Machine Cognition Inc. Pensacola
United States, 2017.

[6] Rigano, Giuseppe & Muratore, Luca & Laurenzi, Arturo & Mingo Hoffman, Enrico & Tsagarakis, Nikos.
(2018). Towards a Robot Hardware Abstraction Layer (R-Hal) Leveraging the XBot Software
Framework. 10.1109/IRC.2018.00036.

[7] Tsagarakis, N. G., Caldwell, D. G., Negrello, F. , Choi, W. , Baccelliere, L. , Loc, V. , Noorden, J. ,
Muratore, L. , Margan, A. , Cardellino, A. , Natale, L. , Mingo Hoffman, E. , Dallali, H. , Kashiri, N. , Malzahn,
J. , Lee, J. , Kryczka, P. , Kanoulas, D. , Garabini, M. , Catalano, M. , Ferrati, M. , Varricchio, V. , Pallottino, L. ,
Pavan, C. , Bicchi, A. , Settimi, A. , Rocchi, A. and Ajoudani, A. (2017), WALK‐MAN: A High‐Performance
Humanoid Platform for Realistic Environments. J. Field Robotics, 34: 1225-1259. doi:10.1002/rob.21702

41

